
ISRAEL JOURNAL OF MATHEMATICS 98 (1997), 101-139 

K - G R O U P S  A S S O C I A T E D  W I T H  

S U B S T I T U T I O N  MINIMAL S Y S T E M S  

BY 

A. H. FORREST 

The Department of Mathematics and Statistics, The University of Edinburgh 

The King's Buildings, Edinburgh, EH9 3JZ, Scotland, U.K. 

e-mail: forrest@maths.ed.ac.uk 

ABSTRACT 

Two ordered Bratteli diagrams can be constructed from an aperiodic sub- 

st i tut ion minimal dynamical system. One, the proper diagram, has a single 

maximal pa th  and a single minimal path  and the Vershik map on the pa th  

space can be extended homeomorphically to a map conjugate to the substi- 

tut ion system. The other, the improper diagram, encodes the subst i tut ion 

more naturally but  often has many maximal and minimal pa ths  and no 

continuous compact dynamics. This paper  connects the two diagrams by 

considering their K0-groups, obtaining the equation 

K0 (Proper) = K0 ( Imprope r ) /Q  • Z ~ 

where Q and u can be determined from the combinatorial properties of the 

substi tut ion.  This allows several examples of subst i tut ion sequences to be 

distinguished at the level of strong orbit equivalence. 

A final section shows that  every dimension group with unit which is a 

s tat ionary limit of Z n groups can be represented as a K ~ group of some sub- 

st i tut ion minimal system. Also every stat ionary proper  minimal ordered 

Bratteli diagram has a Vershik map which is either Kakutani  equivalent 

to a d-adic system or is conjugate to a subst i tut ion minimal system. 

The equation above applies to a much wider class which includes those 

minimal t ransformations which can be represented as a path-sequence 

dynamical system on a Bratteli diagram with a uniformly bounded number  

of vertices in each level. 
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I n t r o d u c t i o n  a n d  def in i t ions  

The work of [HPS, GPS, S] shows that the orbit structure of Cantor dynam- 

ical systems can be classified by means of various dimension group invariants 

associated with the K0 group of a certain C*-algebra. These in turn are closely 

connected with a combinatorial description of the dynamics developed first in 

[LV] and extended in [Pu, HPS, GPS, S]. The combined power of these two new 

methods promises to be of growing use in the study of Cantor dynamical systems. 

The substitution minimal systems form an important class of dynamical sys- 

tems and it is interesting to be able to determine their orbit equivalence classes 

conveniently. To this end, this paper characterises the dimension groups which 

can be produced as orbit invariants of a substitution minimal system. Further, 

this paper develops efficient ways of computing the group invariants (without 

order) for substitution minimal systems and a wide class of other subshifts and 

so to distinguish the orbit structure of these systems. As yet, however, the order 

structure of the invariants is incompletely described by the techniques in this 

paper. 

The method developed here should be contrasted with Host's analysis [HI of 

the Ko group invariants in which several constructions of the dimension group 

(complete with its unit and order) are compared. Host gives a particularly 

elegant construction in the case of a substitution system which is quite different 

from the one taken in this paper. Here there is more emphasis on the compari- 

son of the groups obtained from the so-called proper diagram and the improper 

diagram. 

In this first section, the notation and constructions from the various fields 

involved in this study will be gathered for use in later sections. 

SUBSTITUTIONS. The following is a summary, without proof, of some of the 

definitions and results needed to start examining substitutions of non-constant 

length. See [D2, Q] for details. 

Let A = {0, 1 , . . . ,  A - 1}, A > 2 be a finite set of letters and define A (<~) as 

the set of finite words. 

This paper will consider substitutions, not necessarily of constant length: 

a: A --* A (<~) one-to-one and whose values have length at least 2. (This ex- 

cludes at first the usual substitution description of the Chacon example: 0 --* 

0010, 1 --~ 1.) 

a can be considered as a map from A n or A N by making a act coordinate- 
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wise with concatenation of the resulting finite sequences. In the latter case, 

a: A N -~ A ~ is a continuous map with respect to the metric 

d(x, y) -- inf{2-k: xi -- yi V0 < i < k}. 

a can act on A z keeping track of the zeroth coordinate in the following way: 

The notation ...ab.cde... refers to a finite or infinite word ~, whose zeroth 

coordinate, ~0 is c, ~-1 = b etc. Then a(~) . . . .  a(a)a(b).a(c)o(d).., where 

the zeroth coordinate is the first letter of a(c) and the - l t h  coordinate is the 

last letter of a(b) etc. This is continuous with respect to the natural metric: 

d(x, y) = inf{2-k: xl = Yi V0 < Ill _< k}. 

Call a pair bc cyclic (see [D2] introduction) if there is a k > 1 such that  the 

first letter of ak(c) is c and the last letter of ak(b) is b. 

If bc is cyclic, then there is a unique bi-infinite string which is the limit of the 

sequence akn(b.c) as n --~ c~. Indeed, on the set Z(bc) = {x: x0 = c, x-1  = b} 

with complete metric d, a k is a contraction mapping with this limit as unique 

fixed point. Call this point w(b.c). 

A cyclic pair, bc, is called recurrent (as in [D2]) if the sequence w(b.c) is uni- 

formly recurrent in the sense of IF]. Equivalently: The topological dynamical 

system generated by w(b.c) in A z with the shift is minimal. Equivalently again: 

If a appears in w(b.c) then bc appears in akn(a) for some n large enough. 

It  is not hard to show that  there is a recurrent pair for every substitution 

scheme as defined above. 

Now fix a recurrent pair ai, and write w = w(a.i) and construct the minimal 

shift system generated by w : (X(w), S) with distinguished point w. 

Throughout this paper it will be assumed that  the sequence w is not periodic. 

Periodic substitution sequences are quite easy to construct, for example 0 ---* 010, 

1 ~ 101 

Note that  if bc is cyclic and bc appears in w, then w(b.c) E X(w) and bc is 

recurrent therefore. 

Example: The Morse-Thue substitution: a(0) = 01, a(1) = 10: has all pairs 

recurrent (k = 2) and X(w) is independent of the choice of starting recurrent 

pair. This is a well-known example in topological dynamics [e.g. Ma, Ke, Pal 

and Ergodic Theory [D1, K, Q] et al. 

Having settled on a.i, A may be reduced, without loss of generality, to the set 
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of only those letters which appear in w. Also sequences, w, which are eventually 

periodic are excluded from consideration. 

These conditions and definitions all together define what is known usually 

as a primitive substitution. However, one further reduction is very useful; a 

consequence of the results of [M]: Without loss of generality it can be assumed 

that  an: A ~ A (<~) is 1-1 for each choice o f n  > 1. This is in the sense that  every 

primitive substitution sequence w forms a shift system which is topologically 

conjugate to the shift system formed by a substitution sequence with this 1-1 

property. Indeed, a proof of this fact can be extracted from the second half of 

the proof of Theorem 17 of this paper. 

Def in i t ion:  For the purposes of this paper, all the definitions, reductions and 

assumptions above constitute a primitive substitution. 

I t  may be assumed, by replacing a with a suitable power of a,  that ,  without 

loss of generality, k = 1 in all the definitions above and that,  if b and c both  

appear  in w then b appears in a(c) .  Replacing a with a higher power does not 

change the dynamics. 

A finite or infinite word in which one of the letters is distinguished as the 

0th. coordinate will be referred to as a zeroed word. A zeroed word that  occurs 

in another zeroed word in the correct position will be referred to as a zeroed 

subword. Thus a.b is a zeroed subword of xya .bc  but x . y  is not, although both  

are subwords. 

The following constuctions are adapted from [M] which deals with the 

phenomenon of recognisability. 

Let ~+ = lim~ a'~(.i) ,  the positive side of w. Since w + = a ( w  +) it is natural  

to define B + C N, the collection of 'beats '  in the sequence. More exactly: Let 

lal be the length of a finite word a and write w + = WOWlW2.. . .  Then B + = 

{~-~;=-01 la(wj)l: g = 1 ,2 , . . .} .  

Similarily, B + the k-beats in w +, can be defined k '  

N - 1  

= { lak( j)l: N = X , 2 , . . . } .  
j = 0  

Also define Bk = {~-~;__~1 lak(~j)l, _ E j i N  lak(~j)l: N = 1 ,2 , . . .} ,  the k- 

beats of w. 
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Finite subwords of w, ~+ or other infinite words x are determined by their 

endpoints: Let 

x[r,  s] = x r x r §  " " x s - 1  

a slight variation on the definition in [M]. Note that x E X(w) if and only if every 

finite subword of x is a finite subword of w+. 

THEOREM 1 (Moss5 [M]): / fw  is a primitive substitution sequence, then there 

is an L so that for each t > L C N, either 

(i) { s > L : w + [ s - L , s + L ] = w + [ t - L , t + L ] } C B  + or 

(ii) { s > L : w + [ s - n , s + L ] = w + [ t - n , t + L ] } N B  + = 0 .  

Thus every subword of w of sufficient length occurs in w + either always posi- 

tioned 'on the beat '  or always positioned 'off the beat'. The same theorem can be 

made for B + by an inductive argument and extended to cover Bk by minimality 

of the sequence. The following corollary expresses the generality that will be 

sufficient for later sections: 

COROLLARY 2: f f ~  is a primitive substitution sequence, and M , k  >_ 1, then 

there is an L = L(k, M)  such that for each u > L E N and each 0 <_ j <_ k and 

It[ <_ M,  either 

(i) { s : w [ s - L , s § 2 4 7  

(ii) { s : w [ s - L , s § 2 4 7  

The subtlety of this theorem and corollary lies mainly in the fact that  in general 

nothing can be deduced about the beat structure at the edges of the subword, 

only at the centre. Examples that this is so are necessarily of non-constant length 

[M]. See [Ma] for the stronger recognisability condition that can be deduced in 

the constant length case. 

BRATTELI DIAGRAMS. Again without proof, here are the definitions, construc- 

tions and references necessary to formulate the connection between dimension 

groups and orbit equivalence in symbolic dynamical systems. The basic combi- 

natorial construction is essentially that of Livshitz and Vershik (see [LV]). This is 

presented here with an essential modification due to Herman, Putnam and Skau 

[HPS, S] who also established the connection with topological orbit equivalence. 

A Bratteli  diagram is an infinite graph with a partial order on its edges which 

is constructed in levels as follows: 
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The levels are disjoint finite sets of vertices Vn, with V0 -- single point. Edges, 

E~, possibly multiple, are defined only between the vertices of consecutive levels 

V~ and V~+I. The end-point of an edge e E E~ which lies in Vn is called the 

source of that  edge and the end-point in Vn+l, the range. Each En is partially 

ordered so that  edges with common range are comparible. 

The complete assembly, I = U(v~,  E~), is called an ordered Bratteli  diagram 

(see [HPS]). 

A sequence of edges, one from each of En so that  the source of the edge from 

E~ equals the range of the edge from En-1,  is called a (infinite) path. Two paths 

agree up to level n if the edges picked in turn from E 0 . . - E n - 1  of each pa th  

coincide. In the same way, finite paths can be defined between any two levels, or 

initiate paths can be defined starting from any level. A path, p, passes through 

a vertex, v, at level n, if v E V~ and v is the source of the edge in p from En. 

It  is assumed that  every vertex is connected to the initial point by a finite 

pa th  of the kind defined above. Often it is required that  every vertex in V~ is 

connected by at least one edge to each vertex in Vn+l and such a diagram is 

called 'minimal '  or 'simple' [HPS]. 

Two infinite paths are cofinal if their edges coincide from some level on. Two 

such paths, p, p~, are comparable in a partial  order induced by the partial  order on 

t t .. e ~ be the initial segments the edges as follows: Let e0, e l , .  �9 �9 en-1 and e0, e l , .  ,~-1 

of the two paths up to level n beyond which the paths coincide. Suppose that  

en-1 ~ en_lt and note that  these edges have common range. Then p < p~ if 
! 

e n - 1  ~ e n _  1- 

A pa th  is maximal  if it is maximal with respect to this order. In this case 

each edge in this pa th  is maximal  among the other edges with the same range. 

A pa th  can be maximal to a given level in this sense. Indeed, for every vertex, 

v, there is a pa th  from the initial vertex in 170 to v which is maximal  - -  this 

fact will be used often in the constructions of the next few sections. These finite 

maximal  paths need not be the initial segment of some infinite maximal  pa th  - -  

a complication which will be noted later. 

A similar definition is made for minimal paths. 

Note that ,  by compactness, an ordered Bratteli diagram always has a maximal  

pa th  and a minimal path. On the other hand, there may be many infinite maximal  

paths, although if the size of the levels are uniformly bounded then there are a 

finite number of infinite maximal paths. Similarly for minimal paths. Later in 
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the paper, at tention will be restricted to the case that  there are a finite number 

of minimal and maximal infinite paths, so covering the case of uniformly bounded 

vertex sets. 

The space of infinite paths, P,  is compact with respect to a metric that  com- 

pares initial segments - -  this is sometimes called the Markov Compactuum [LV]. 

The map, V, which sends a path  to its immediate successor, is well-defined and 

continuous on the complement in P of the set of maximal paths. This will be re- 

ferred as the Vershik map, after [GPS]. It  is 1-1 and its image is the complement 

of the set of minimal paths. 

Sometimes, for example if there is a single maximum and a single minimum, 

V can be extended homeomorphically to the whole of P,  associating each max- 

imal path  to a minimal path  as necessary. This homeomorphic 'glueing' cannot 

proceed in general, however, and remains a problem in many cases. 

Connection matrices: j(m,n): 0 _< n < m is the IVm] • IVnl matrix whose i , j  

entry records the number of edges (_> 0) from vertex j of level n to vertex i of 

level m. Thus j (n ,m)j(m,p)  = j(n,p) etc. The Bratteli diagram can be encoded 

as the sequence of matrices, y(1,0), j(2,1), j(3,2),. . . .  

j(m,n) maps Z y~ ~ Z ym and so define a sequence of positive group homo- 

morphisms on which a direct limit can be taken: Ko( I )  = l imj  Z y~. The rep- 

resentation of this that  will be used here is the set U n ~ { n }  • Z y~ quotiented 

by the relation (n,v)  - (m,w),  m :> n, if J(m'n)V = W. The process of ad- 

dition quotients through this naturally: [(n, v)] + [(m, w)] = [(p, z)] whenever 

there are representatives (q, v~), (q, w')  and (q, z') of each of these classes so that  

v ~ § w ~ = z ~. The notion of positive element is also well defined: The class 

[(n, v)] >_ 0 if it has a representative, (n, v), so that  all coordinates of v are _> 0. 

There is a natural  order unit ][ = [(0, (1))]. Thus (Ko(I ) ,  >_, ~) is a dimension 

group with unit as in [HPS] et al. 

Other order units in this K0 may be specified giving a possibly non-isomorphic 

dimension group with unit. 

Note that  this construction does not depend upon the ordering on edges or 

paths. 

An (ordered) Bratteli  diagram is said to be stationary if V,~ have the same 

number of elements for all n > 0 and there is an order on each V~: n > 0 so 

that  the graphs (Vn U Vn+l, E,~): n > 0, taking into account the order on the 

vertices (and on the edges in the case of ordered diagrams), are identical. This 
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appears in the picture itself as a repetition, between every level of vertices, of 

the graph found between the second two levels. The list of connection matrices 

which correspond to such a diagram will therefore be constant from the second 

term on. 

DYNAMICS. (See [P, W] for a general introduction.) Suppose that  X is a Can- 

tor set (compact metric, totally disconnected without isolated points) and that  

T: X ~ X is a homeomorphism onto. The combination, (X, T), is called a Can- 

tor dynamical system. In this paper, attention will be restricted to the case that  

X C A z, where A is a finite set of letters, and T is the bilateral shift, S, i.e. 

subshifts. Many arguments proceed for the general case, however. 

(X, T) is said to be minimal if there is no proper closed subset F so that  

TF = F. Equivalently, every orbit, O(x) = {Tnx: n E Z}, is dense. Equivalently 

again: if Z is a non-empty clopen subset of X, then n(x) = min{n _> 1: Tnx E Z} 

is well-defined and continuous on all of X. 

In this latter case, an induced homeomorphism can be defined on Z: Tz: Z ---* 

Z where Tzx = Tn(~)x. Thus (Z, Tz) becomes a dynamical system which can be 

shown to be minimal subject to the conditions above. 

Two systems, (X, T), (Y, U), are orbit equivalent if there is a homeomorphism 

r X ~ Y such that  single orbits O(x) are mapped onto single orbits O(y). 

Therefore minimality is a property preserved by orbit equivalence. 

When there is orbit equivalence, there are maps n: X ~ Z and m: Y --* Z so 

that  if y = r then r  = U'~(~)y and r  --- Tm(Y)x. If both n, m are 

continuous except at a single point, then this is called strong orbit equivalence: 

a strictly stronger notion. 

Two systems are strongly Kakutani orbit equivalent if they each have some 

induced system and these are strongly orbit equivalent. 

Given B a sub Z-module of C(X: Z), write cbdys(B ) = {f  - f o S: f E B}. 

If B is S-invariant then cbdys(B ) C_ B. 

Define K~ = C(X: Z)/  cbdys(C(X:  Z)). This is often written as 

Hi(X,  S,Z) in the literature [HI and this is indeed the same as a first group 

cohomology of Z and as the first Cech cohomology of a mapping torus. The 

notation used here is taken from [Pu, HPS] owing to the close connection with 

K-theory established in those papers. 

Note that  this group comes equipped with a natural order (If] _> [g] if and only 

if there are f E If] and g E [g] such that f _> g as elements of C(X: Z)) and a 
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natural  order unit (the equivalence class that  contains the constant 1 function). 

This satisfies the axioms for dimension group with unit (see [HPS]). However, 

order properties will only be touched in the last section of this paper. 

Here is the fundamental theorem of [GPS] which connects the properties of 

orbit equivalence to the K ~ groups. 

THEOREM 3: Suppose that all is set up as before, then (X,T)  is strongly 

Kakutani orbit equivalent to (Y, U) if and only if K~ T) is order-isomorphic 

to K~ U) as dimension group. 

So the orbit structure of a dynamical system is determined in part  by the K ~ 

groups and it is important  therefore to find an effective way of computing these. 

The work of [HPS] establishes a fruitful connection between Ko and K ~ and this 

is outlined here for the case of subshifts. The details are important  in this case 

since this construction will be referred to in Theorem 5. 

THE PROPER DIAGRAM. Suppose that  (X, S) is a minimal invertible aperiodic 

subshift and w E X.  The following procedure constructs from this an ordered 

Bratteli diagram: 

Suppose that  Zo = X, Z1 , . . .  is a strict descending sequence of clopen sets such 

that  N Z n  = {~}. Let R~ = {m e Z: Sm~ �9 Z~} so that  {0} = N~R~,  and 

R~ D Rn+l, for all n. 

Write m < <  m / �9 R ,  if m , m  ~ �9 R~ and m < m '  have no other elements of 

R,~ between them. For such a pair record the following information: The word 

~[m,m'] :  The sets Rj[m,m'] for 0 _< j < n where 

Rj[m,m'] = { p -  m: p G Rj: m <_ p < m'}. 

The minimality of the system ensures that,  for fixed n > 0, there is a uniform 

bound on m I - m and so the information has a finite number of encodings as 

above and 

yn+, = m'], Ro[m, m'] , . . . ,  m']): m <<  m' e Rn} 

is finite therefore. The elements of V1 will be in 1-1 correspondence with the 

alphabet A, for example. 

These form the levels of vertices in an ordered Bratteli  diagram which is 

constructed as follows: 
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Let Vo = { single vertex } and connect each vertex in V1 to 110 by a single edge; 

there is no need to worry about the ordering on these edges. 

For each n > 2, decompose each element, a ,  of V~ as an ordered list of elements 

from Vn--I: a = /31/32 �9 " " ~k. In detail, if a is constructed from m < <  m '  �9 Rn-1 

as above, and if Rn_2[m,m']  is written {0 = Po < Pl < "'" < Pk-1 < pk = 

m '  - m}, then set 

~5 = (w[m + p j _ x , m  + pj] ,Ro[m + p j _ x , m  + p j ] , . . . , R n - 3 [ m  + p j - l , m  + pj]). 

In the diagram, a is connected to/3 �9 V~_ 1 by an edge of ordinality j if/3 =/3 j  

in this decomposition. 

This may be repeated for each n independently to construct a Bratteli  diagram 

in which the initial vertex is connected to every other vertex. 

To find which pa th  corresponds to a particular element x �9 X: Fix n > 0. Let 

Rn(x) = {m �9 Z: Smx �9 Zn} 

! 
and let m n ( x )  = max{m < 0: m �9 Rn(x)} and m n ( x )  -- min{m > 0: m �9 

Rn(x)}. Let 

Rj,n(x) = {p - m . (x ) :  p e Rj(~): ran(x) < p < m : ( x ) }  

defined for 0 < j < n, and note that,  by construction, 

~ .  = (x[m.(x) ,  m'(x)] ,  Ro,~(x) , . . . ,  Rn-l,.(x)) 

is in Vn+l and this forms the sequence of vertices that  the pa th  will go through. 

To determine the edge which the pa th  takes between an-1  EVn and a,~ E V,~+I, 

write Rn- l ,n  = {0 = Po < Pl < "'" < Pk-1 < Pk = m ' ( x ) - m n ( x ) }  and 

note that  there is a unique j:  0 < j _< k so that  m n ( x )  + Pj-1  = m~-l (X)  and 

m n ( x )  + pj  = m ' _ l ( X  ). Therefore choose the edge with ordinality j .  Continue 

in this way for every level and so build a path  in the diagram constructed before. 

This is the subshift version of the construction of [Pu] and [HPS, part  4], but  

it ignores the complication of whether further refinements need to be made by 

parti t ions on X which generate the topology. In fact, in the case of subshifts, 

no such complications arise since the construction of paths above distinguishes 

points. 
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By [HPS], this Bratteli diagram, J, has a unique maximum path and a unique 

minimum path, and the Vershik map, V, can be defined homeomorphically on 

the path space, P(J). 

The following connects the dynamics with the diagram and its K0 group. 

THEOREM 4 ([HPS]): If  (X, S) is a minimal Cantor system and J a Bratteli 

diagram derived from (X, S) by the procedure above, then 

(i) K~ S) - Ko( J) as groups (indeed as dimension groups with unit). 

(ii) ( X,  S) is topologically conjugate to ( Pi  J), V). 

Bratteli diagrams associated with substitutions 

Vershik and Livshitz [LV] construct an important example of an ordered sta- 

tionary Bratteli diagram connected with a substitution scheme in the following 

natural way: 

THE IMPROPER DIAGRAM. Suppose that a: A --* A (<~) is a substitution 

scheme. Consider the stationary diagram each of whose vertex layers ibeyond 

the initial single point) is a copy of A and whose periodic edge arrangement is 

formed by connecting i n + 1, A) (i.e. the symbol A in the n + 1st. layer) to i n, A') 

(n > 1) by an edge with ordinal k whenever a(A)k = A ~. The single point in the 

0th. layer is connected by a single edge to each of the points of the 1st. layer. 

For example, the repeating unit of the diagram associated to the Morse-Thue 

substitution is a graph of two two-point layers with all possible connections be- 

tween the layers and no multiple edges (i.e. K2,2 the complete bipartite graph 

on 2 § 2 vertices). The ordinal assignment to edges is such that, if the points are 

arranged naturally in a square, then the diagonal edges have ordinal 1 and the 

lateral edges ordinal 0. 

The Vershik map for the diagram in this example is not everywhere defined. 

There are two maximum paths and two minimum paths and there is no way of 

assigning each maximum to a unique minimum to obtain a continuous extension 

of the Vershik map defined as before. [LV] shows, however, that by ignoring the 

forward orbits of the minimum paths and the reverse orbits of the maximum paths 

(which are well-defined for the Vershik map), the continuity of the dynamics can 

be restored. Although not compact, the resulting system is uniquely ergodic and 

is metrically isomorphic to the uniquely ergodic substitution minimal system. So 

a correspondence in the category of measure-preserving dynamics is obtained. 
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The discussion above leaves the question of topological conjugacy unanswered, 

however. Indeed, there is no hope of a simple correspondence in this case since the 

Vershik map cannot even be defined everywhere and there is no second compact 

topological dynamical system to compare. 

But all is not lost since the original substitution sequence can be retrieved 

from the forward orbit of a minimal path. Consider, the path, q*, which passes 

through the points (i, n) at each level is minimal (recall a(i)o = i, by assumption) 

and the map ~ which sends the path q to the letter at level 1 which lies on q. 

The sequence (~-(Ynq*): n > 0) is  precisely the right-hand limit limcrn(.i). 

Similarly, if p* is the (maximal) path which passes through the points (a, n), 

then (Tr(Vnp*): n _< 0) is the limit l iman(a.) .  Thus 

w . . . .  ~ r ( V - i p * ) r ( p  *).Tr(q*)~r(Vq*).. . .  

The arguments of this section show that it is precisely the existence of many 

maxima and minima and their relationship which modifies the correspondence 

between the substitution minimal system and the dynamics of the diagram con- 

structed by Vershik and Livshitz. Further, this modification can be made exact 

in terms of the K-groups. 

The invertible minimal dynamical system, (X (w), S), constructed from a mini- 

mal substitution scheme has a privileged point, namely the bi-sequence w starting 

with a.i and stationary with respect to application of a. Thus a Bratteli diagram 

can be constructed from this using the general method of [HPS] above and it will 

not in general be the same as the one constructed by Vershik and Livshitz since it 

will have a well-defined Vershik map and unique maximum and minimum paths. 

Delqnition: This latter diagram will be called a proper Bratteli diagram for the 

substitution. 

The first construction of Vershik and Livshitz will be called the improper 

Bratteli diagram for the substitution. 

SOME TECHNICAL NOTES. Recall the assumption on the substitution: that  if b 

and c both appear in w then b appears in a(c) .  This translates to the fact that,  

in the Improper diagram, every point in Vn is connected to every point of Vn+i 

by at least one edge in E~ - -  i.e. minimality of the diagram. (Regarding the 

over-use of the word minimal to refer to paths, dynamical systems and diagrams: 

the last two are almost the same and the first is quite distinct.) 
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A direct consequence of the minimality of the diagram: If p, q are any two 

paths and t > 1 is given, then there is a j such that VJp is well-defined and 

agrees with q to level t. To see this, take q to level t and continue it by some 

edge (which exists by minimality) to p(t + 1) on level t + 1 and continue this 

arbitrarily to form a path, q', which agrees with q to level t. q'(t + 1) = p(t + 1) 

and so the initial paths of p and q to level t are comparable and so there is a j 

such that VJp agrees with q' to level t + 1 (j will be positive if the initial path for 

p is less than the initial path for q', negative otherwise). Thus VJp agrees with 

q to level t as required. 

A maximal path and a minimal path do not agree beyond a certain level. 

If p is minimal, then V'~p is well-defined for all n > 0 and no V~p: n > 0 

is maximal or minimal. This is because if p is non-maximal, then Vp is well- 

defined and differs from p only in a finite number of edges. If Vnp were maximal, 

then there would be a maximal path which would coincide with a minimal path 

beyond a certain level - -  a contradiction. 

The main theorem of this section shows that the phenomenon of stationar- 

ity continues in the case of Proper Bratteli diagrams for substitution minimal 

systems: 

THEOREM 5: Suppose that a is a primitive substitution scheme and w = w(a.i) 

is the substitution sequence obtained from it as above; then there is a Proper 

Bratteli diagram for (X(w), S, w) which is stationary. 

Proof; Recall the corollary of Moss~'s Theorem from before (Corollary 2) and the 

sets Bk and bounds L(k, M)  produced there. Let A~ --[ak(a)[ and Ak ----lak(i)[ 

and set Mk = max{Ak, A~} and Lk = L(k, Mk). 

Say that  a,  a subword ofw of length 2Lk, has condition Ck if, for -A~ _< t _ Ak 

and 1 < j _< k, the set {s: w[s - Lk, s + Lk] = a} C Bj  - t if and only if t �9 Bj. 

Note that ,  by Corollary 2, {s: w[s--Lk, s+Lk] = a} C Bj  - t ,  fails for It[ < Mk 

if and only if {s: w[s - Lk, s + Lk] = a} N Bj - t = 0. Thus the condition Ck can 

be confirmed for a by examining any occurrence of a in w. 

Define Xk  = {x �9 X(w): x[ -Lk ,  Lk] has condition Ck}. This is a set defined 

by what happens on a finite number of coordinates and so it is clopen. Further, 

w �9 Xk for all k. 

Let Z1 -- {x �9 Z(w):  x-1 = a, xo = i} and Zk+l = {x �9 Xk: x[-A~,Ak] = 

ak(ai)} for k _> 1. These are clopen and Nk Zk = {w}, confirming the require- 
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ments for the construction of a proper ordered Bratteli diagram outlined in a 

previous section. Recall that  Rn = {m 6 Z: smw 6 Zn}. 
Proceed with the construction of the proper diagram and note the most impor- 

tant  property that  for k k 0, 0 <_ j _< k and -A~ < t _< Ak, either Rj+I C (Bj - t )  
(if and only if t 6 Bj) or Rj+I N (Bj - t) = O (otherwise). 

This can be turned into a characterisation of elements of Rn: r 6 Rn if and 

only if 

w[r - An_l; r + An-l] = an-l(ai) 

and 

A t  - -  - -  A ! - -  - -  ={- n-1 < <A~-I: 6 { -  n_l < t < A n - l : r + t  e B~) t t Bj) 

for all 0_< j _< n -  1. 

Applying a once to w leaves w unchanged, but subwords are substi tuted and 

moved outwards and their new position can be followed. In detail, cr defines a 

map  T from Z into Z as follows: 

~ Io(~)1 m___O, and 
r(m) = O < j < m - - 1  

2 -  E la(wj) I otherwise. 
m < j < - - I  

This has the immediate properties: a(w[r,s]) = w[T(r),T(S)] and Bn+l = 

T(Bn). I t  is less immediate but important  for the continuing argument to show 

that  T(Rn) ---- Rn+l for all n > 1; the argument needed is given in the next three 

paragraphs: 

Suppose that  r E Rn, so that  it obeys the characterisation of Rn above. By 

applying a to the first part  of the characterisation, it is immediate that  

W[T(r) --A', T(r) + A,] = an(ai) 

confirming the first part  of the characterisation of R,~+I. Further, since 

~ [ r  - A' = n - l ,  r + An-l] (Yn-l(ai) 

then 
r + t - - 1  t - - 1  

m ~ r  m~- .O 



Vol. 98, 1997 SUBSTITUTION MINIMAL SYSTEMS 115 

for all 0 < t < A~-I, and similarily for -A'  < t < 0. This implies that 
- -  - -  n - - 1  - -  - -  

T(r + t) ---- w(r) + T(t)  under these conditions. Thus 

7{t:  - A~n_l < t < An--1 andr + t E B j }  

= {7(t): - A~ _< T(t)  _< A~-I and T(r + t )  E B j + I }  

= {t: - A~ _< t < A~-I and T(r)  + t  E Bj+I} 

and so the second condition for membership of R~+I is obeyed, proving that 

T(r)  C Rn+l .  

To show that T maps from Rn  onto R~+I, suppose that s E Rn+l and use the 

characterisation above again. This shows that sitting in w, the word w [ s -  A~, s + 

An] is split by the beats B1 exactly as if it were the word w[-A~, Am] = a~(a . i ) .  

Thus w[s - A~, s + )%] = a(w[r - A~_l,r' + An-l]) for some r and T(r)  = S. It 

is now necessary to show that this r comes from R~. However, this is almost 

immediate by extending the argument above to higher levels of beats. Observe 

that,  for each 1 < k < n, the beats Bk break the word w[s - A~, s + A~] just as 

they break the word w[-A~, An] an(a . i )  so confirming the remaining conditions 

needed to put r in Rn.  

Since T is 1-1 in any case, it is therefore a bijection between R~ and R~+I for 

any n. 

More generally, a function 

n - 1  

n) -- Z I (xj)l 
j=O 

can be defined for n _> 0 so long as x o x l . . . x ~ - i  are defined. 

Fix n > 1 and recall that each element of Vn+l is defined by a list of information 

obtained from a pair, r < <  s, of consecutive elements of R~. In this case, the 

list is 

(w[r, s], Ro[r, s], . . . , R~_  l[r, s]). 

Let a be the finite word s o ' "  a s - r - 1  =w[r ,  s]. 

Since V is 1-1 and onto R~+I, the general consecutive pair in R~+I is of the 

form T(r)  = r I < <  T ( 8 )  = 81 E R n + l .  The list which corresponds to this pair is 

(w[r', s'], Ro[r',  s'], . . . , R~[r' ,  s']) 

and, by construction, 
= 
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R o V ,  8'] = { 0 , . . . ,  s '  - r '}  

and 

Rj[r',  8'] = Rj_ , [r ,  s]) 

(i.e. the image of Rj_l[r, 8] under the map T(~, .)) for all 1 _< j < n. So the 

function 

E(c~, Ao, . . . ,  An) = (a(c~), {0, 1, . . . ,  la(c~)l}, T(c~, Ao),. . . ,  v(a, An)) 

is a map from Vn onto Vn+l. 

Recall the construction of edges in the proper diagram and note that the map 

E respects these connections. I.e. w E Vn+l is connected to v C Vn by an edge 

with ordinality j,  then E(w) is connected to E(v) by an edge with ordinality j. 

Since all the Vn are finite and the E onto, E: Vn ~ V~+I must be 1-1 for all n 

large enough, hence bijective. For such n, E defines, therefore, an ordered graph 

isomorphism between (Vn u Vn+l, E,~) and (Vn+l o V~+2, En+l) which gives the 

stationarity required of the diagram at all levels high enough. 

Also, the first few levels can be telescoped (see [HPS]) into one to get a true 

stationary diagram and the theorem is proved therefore. 

Example: The Proper Bratteli diagram obtained from the Morse-Thue sequence 

using the method of the proof above has a periodic unit from the second level 

which involves 4 vertices at each level. 

This has a connection matrix 

j =  1 
1 

1 

111) 
1 0 1 
1 2 1 " 

1 1 1 

This produces Ko --- Z[1/2] G Z where Z[1/2] is the group of diadic rationals. 

This implies that the substitution system generated by the Morse-Thue 

sequence is not strongly Kakutani orbit equivalent to the 2-adic odometer. Thus 

an important distinction among dynamical systems can be deduced by inspection 

of the Ko group. 

Even in this example however, it is not clear how to connect the Proper Brat- 

teli diagram by purely combinatorial means to the simpler Improper Bratteli 

diagram. In this paper, the connection is made via the K-groups involved. At 

first, the work will be applicable to Bratteli diagrams in general with a few light 

assumptions. 



Vol. 98, 1997 SUBSTITUTION MINIMAL SYSTEMS 117 

P a t h - s e q u e n c e  d y n a m i c a l  s y s t e m s  a n d  t h e i r  d i m e n s i o n  g r o u p  

Assume now that  I = (Vn, En) is a Bratteli diagram and that  there are only a 

finite number of maximal and minimal paths, sets denoted M and N respectively. 

This will certainly occur if I is the improper diagram of a substitution sequence. 

Without  loss of generality, it may be assumed that  the diagram is minimal 

in the sense that  each element of Vn is connected by at least one edge to each 

element of V~+I, for all n _> 0. Also the initial edges of each maximal or minimal 

path  on the first level can be assumed to be distinct. Thus pairs of maximal  paths 

have no edges in common, nor do pairs of minimal paths and pairs minimal and 

maximal. All these properties can be assured by means of suitable 'telescoping' 

and 'microscoping' (see [HPS]); changes which do not affect the generality of the 

theorems to be proved. 

Let P be the pa th  space, compact with respect to the natural  topology of 

initial agreement of pa th  edges. The Vershik map V is defined on P \ M and its 

inverse on P \ N.  

Form a relation ~ between M and N by connecting p E M to q E N if and 

only if there are paths an --* p such that  Van ~ q and paths bn ~ q such that  

V - l b n  ~ p. 

Note that  every p E M is related to some q E N and every q E N is related to 

some p E M. Also if p ~ q, then both p and q are unrelated to any other paths 

if and only if V may be extended homeomorphically by defining V p  = q. 

Construct the following space: 

II = {(p~) E pZ: Yn E Z either (P,~+I = Vpn)  

or (Pn E M,  pn+I E N and Pn ~ Pn+l)}. 

The shift, S: P~ -* P~, is defined: (S(pn: n E Z))m = Pm+l. 

It  is straightforward to confirm that  II is compact as a subspace of pZ with 

the Tychonov topology and S is a homeomorphism of II onto itself. Further, II  

has no isolated points and so is a Cantor set. The density of all orbits in H can 

be deduced directly from the minimality of the Bratteli diagram and so (H, S) is 

minimal. The system (H, S) will be called the path-sequence space. 

Given p ~ q, the point x(p,  q) = (Pn) is defined uniquely in II  by the condition 

P-1 - - P  and Po = q. 

For each t E N and p E P,  consider the following function defined on pZ: 

F(pt)((q,~)) = 1 if the edges of qo agree with those of p up to level t, and 

Fp (t) ((qn)) -- 0 otherwise. 
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These are the indicators of basic clopen sets depending only on the zero coordi- 

nate. Thus the F (t) are continuous and the algebra generated by them and their 

translates by S (and without completion) is equal to C(PZ: Z), the continuous 

Z-valued functions on P~. This algebra projects by restriction onto C(II:  Z). 

SOME GRAPH THEORY. Suppose that  G = (V, E) is a finite graph with simple 

edges and no loops. The edge-vertex matrix, A(G),  is defined to be the 0 -  1 

valued ]E I • IVI matrix, columns indexed by vertices, v E V, rows indexed by 

edges, e E E,  such that  A~,v = 1 i f fv  E e, i.e. v is an end point o f e .  A c a n  

be thought of as a group homomorphism and Z-module map on column vectors 
A: Z v --* Z E. 

LEMMA 6: Suppose that  G is bipartite with c connected components, then 

z E / I m ( A )  = Z ~ 

where v = I E ] - I V] + c, and so Ira(A) is complemented in Z E. 

In fact, a complimentary subspace, C C Z E, can be constructed which has a 

basis of unit vectors indexed by a set of edges, E I, whose removal from E leaves 

G cycle-free without increasing the number of components. 

Proof'. To show the existence of v _> 0, it is sufficient to show that  z E / I r a ( A )  is 

torsion free. Suppose, therefore, that  v E Z E, and k > 1 such that  kv E Im(A); 

it is sufficient to show that  v E Ira(A). 

The operator A may be considered combinatorially as a way of transferring an 

integer weight distribution on the vertices to an integer weight distribution on 

the edges by assigning to each edge the combined weights of its end-points. The 

fact that  kv E Im(A) shows that  there is a distribution w on the vertices so that  

A(w) = kv. Thus the values of w to be found at either end of an edge sum to 0 

mod k. 

In the case of a connected biparti te graph this shows that  w has at most two 

values + t  mod k, and the split coincides with the bipartition. 

Pick a representative of this t from Z so that  0 < t < k and consider the weight 

distribution w ~ which equals t whenever w equals - t  mod k, and which equals - t  

when w equals t mod k. Then A(w ~) = O, A(w - w ~) = kv. Further, w - w ~ = 0 

rood k and so v = A((w - w ' ) / k )  E Im(A) as required. 

For a disconnected graph, this construction can be made on each component  

independently to the same effect. 
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The complementation now follows from simple algebraic considerations. 

The exact value of v is obtained by dimensional considerations: The smallest 

complex vector-subspace of C IEI which contains Im(A) is also the cut space (or 

coboundary space) of G (see [B], p.36ff, for example) which has dimension IV I - c .  

The complement therefore has dimension ]El - IV I + c as required. 

The construction of a complementary space can be made by considering a 

second meaning of the value of v found in [B]. v is the minimal number of edges 

which can be deleted from G to make it cycle-free. Let E '  be a minimal set of 

edges to be deleted. Then the unit vectors in Z E indexed by elements of E '  span 

a space, C, complementary to Im(A) as required. The information about the 

number of components comes from considering the minimality of E ~. 

Finally, the definition of the subgroup, Q, of Ko(I) where I is an ordered 

Bratteli diagram: 

Recall the connection matrices, j(t,s), of the Bratteli diagram which count the 

number of paths from points in level s to points in level t. Introduce the vectors 

ev, v a vertex in level t, which form the unit basis for Z y~. 

Recall also that  an element of Ko(I) is represented as an equivalence class of 

pairs [(s, a)] where a E Z v~. (s, a) =- (t, a ') ,  t > s whenever J(t,s)a = a' etc. 

Fix a level t. Suppose that k > 0, that q = (q~) is some path-sequence in 

II and that,  for each v E Vt, pv is some choice of infinite path which passes 

through vertex v at level t and is maximal to level t. This defines a vector 

Ev E0<m<k F~.(t)(Smq)e.. Let Bt C Z y* be the set of all vectors that can be 

formed in this way. 

Define Qt -= {a E zv ' :  supze~ 

euclidean inner product. 

LEMMA 7: For s > t, J(S't)Qt C Qs. 

I<fl, a>l < cx~ } where <.,.> is the usual 

Proo~ Suppose that  a E Qt with suP~e~ <~,a> = K and set J = j(t+l,t).  

Suppose that  for each w E Vt, p~ is a path through w at level t and maximal to 

level t + 1. 

Splitting F(pt ) to the next level, ,r'(t)p~ = ~ h  F'(t+l)ph,~ where the sum is over edges 

h E Et whose source is v and where Ph,v are paths coincident with Pv to level 

t and running along edge h to level t + 1, thereafter proceeding arbitrarily. If 

w E Vt+, is the range of h E Et, then I z.~o<m<k~ p~.~ 

uniformly in k, since Ph,v and p"  have a common vertex at level t + 1. 
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Summing over h with common source v produces 

(F(t) ~ ( t+ l )  m - Jw,.F~: )(S q) < 2[Et[ 
O <m<k  wEV,+I 

uniformly in k. Therefore [(~3 p, Ja)[  _< K + 2[Etl max.  la.[ for all ~3' E ~ + l  as 

required for the lemma. 

Definition: Q = {(t,~:): a E Qt}. 

It is immediate that this is a subgroup defined by completely positive conditions 

and so Ko(I) /Q,  being torsion free, is a well-defined dimension group with a unit 

inherited from Ko(I). 

Some further properties of Q which sometimes help its calculation: 

L E M M A  8:  

(i) All a E Qt have the property that sup8 [[J(8't)a[[ <_ K (same K as the 

definition) where the norm is loo norm in Z v~ . 

(ii) Q is a subgroup of the infinitesimals in Ko(I) (see [GPS] for a definition). 

(iii) Q - Z ~ for some #. 

Proo~ (i) The rows of the matrix j(8,t) are vectors which are in I t  since, if 

j E V~ is the label of the row in question, the row vector can be formed by a 

single sweep of a path minimal to vertex j through to the next path maximal to 

j .  Thus the condition on elements of Qt becomes the loo condition required. 

(ii) Immediate from (i). 

(iii) No element of Q is infinitely divisible, nor is it torsion. 

Thus Q - 0 in many simple cases, e.g. in the stationary case when there are 

no eigen-vectors with value • or in general when there are no infinitesimals in 

Ko(I). Indeed it is quite hard to find examples where Q is non-zero, but they do 

arise. See example (d) later. 

THEOREM 9: Suppose that I is an ordered Bratteli diagram with a finite number 

of maximal and minimal paths, then there is a finite v >_ 0 such that, as groups, 

Ko(I ) /Q (3 Z ~ - K~ S). 

Proofi This splits into several sections labelled as follows: 

(A) Sets which span C(II: Z): (I) Indicators of basic clopen sets and products 

of certain pairs of these are sufficient to span C(II: Z). (II) The space, B, spanned 
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by the basic indicators and simple relations between the pair products modulo 

B. (III) The linear span of these simple relations generate all there are. 

(B) Direct sum decompositions and coboundaries: (I) B is complemented in 

C(II:  Z) which splits into a direct sum of B and C, both S-invariant spaces. 

(II) B~ cbdYs(B ) = Ko(I)/Q. (III) C~ cbdys(C ) -- Z ~. 

(AI) Recall the functions F(t): H ~ {0, 1} which indicate those pa th  sequences 

(pn) for which P0 agrees with p to the tth. level. T h e  algebraic span of these and 

all their shifts is C(II:  Z). The number of multiplicative combinations needed to 

span C(II:  Z) can be reduced significantly by the following considerations: 

The F (n) themselves are not linearly independent. In fact each Fp (n) can be 

written uniquely as a finite sum of F(, ~+1) functions of disjoint support,  namely 

those indexed by p~ which are paths agreeing with p to the nth. level and disinct 

to the n + 1st. level. 

Moreover, given two paths p, q the product F(n)F  (m), n _< m, equals the zero 

function except in the case that  p agrees with q up to the nth. level, in which 

case the product equals F (m). I.e. products of basic zero-coordinate functions 

span nothing more than the basic functions would span. 

Consider two paths p, q with p not maximal to level n. In this case, given 

another pa th  p / p l  agrees with p to the nth. level if and only if V# agrees with 

Vp to the nth. level. Thus F (~) = F(vp ) oS and the product F(n)(F (m) oS)comes 
~(n') 

under the argument of the last paragraph and so reduces to a single ~ p, o S or 

zero. 

On the other hand, if p is maximal to the nth. level, then either p agrees with 

an infinite maximal path  to the nth. level or there is an n ~ > n such that  every 

pa th  which agrees with p to the nth. level is not maximal to the n~th. level. 
~.(n') p/ 

In the lat ter  case, F (~) is a sum of expressions of the form ~ p, , none of the 

maximal  to the nQh. level, and the argument of the previous paragraph applies 

here to the same effect. 

The case that  remains is the one where p is, in effect, an infinite maximal path. 

The argument above applies equally to q with respect to minimality and so the 

only case unaccounted is the one where p is maximal and q minimal. Assume 

that  this is so and assume further that  p is not related to q by ~.  Consider the 

product F(pn) (F (m) o S): 

First, recall the assumption that  pairs of maximal paths have no edge in com- 

mon. Thus, i fp is maximal F (~) can be expressed as a sum of functions of the form 
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Fp(n+ l ) , , where precisely one of the p '  is maximal and equal to p therefore. Simi- 

larly for the F (n) with respect to minimality. Thus, for n' > n, m, F(n)(F (m) o S) 

is a sum of products like F(,~')(F~, ~') o S), where p '  is not maximal or q' is not 

minimal, plus F(n')(F (n') o S). All these first summands are single F ( f  ) or iden- 

tically zero by the arguments of past paragraphs and so F (n') (F  (~') o S) differs 

from F(n)(F (m) o S) by a sum of functions of the form F ( f  ). 

Now pick n '  sufficiently large that  F(pn')(r) = 1 implies F(n')(Sr) = 0. This can 

be done by the fact that  p and q are unrelated by ,,~. Thus F(pn')(F (~') o S) = 0 

and F(n)(F (m) o S) is a sum of functions of the form F(, n'). 

The case p ~ q will be left necessarily. 

This reduction argument may be applied inductively to longer products 

to show tha t  nothing more than F ('~) o SJ: p E P,n C N, j  6 Z and 

(F(n) o SJ)(F(~)o sJ+I) :  p ~ q,n E N, j  6 Z are needed to span C(II:  Z) 

linearly. 

(AII) Let B = spanz{Fp(~) o sJ: p 6 P,n  6 N, j  E Z} and DD = 

spanz{(F  (n) o SJ)(F (~) o SJ+I): p ,- q,n 6 N, j  �9 Z}. The arguments above 

show tha t  C(H: Z) = B + DD therefore. 

The argument now reduces this spanning set further: Consider the linear inter- 

dependences of the (F  (n) o SJ)(F (m) o s J + ' ) :  p ,- q modulo B. 

First recall the work of previous paragraphs relating to the simplification of 

products: This shows that,  for all n, m, 

F(1) (Fq (1) o S) = F(pn)(F (m) o S) "}" Z F(p n') 

where the lat ter  summand is a finite sum over p '  none of which is maximal  to 

the n ' th .  level. This expression will be used constantly in what follows. 

In particular, C(II:  Z) = B + D where 

n = spanz{(Fp (1) o S J ) ( F  (1) o SJ+I): p , ~  q, j  �9 Z}. 

Another set of linear relations is obtained: for each ra there is an n so that  for 

fixed p �9 M 

Z F(P ~)(F(m) o S ) =  F (~) �9 B 
q: p~q 

and similarly for fixed q �9 N 

o S )  = Fq(n) o S �9 B .  
p: p~q 
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To see the first equality, for example, it is sufficient to have n large enough so 

that  if p is maximal  and F(n)(r) = 1, then F(m)(Sr) = 1 for some q: p ~ q. 

Similarly for the second equality. 

Using the equivalences above, this becomes 

(.) ~ F0)(F(1)p , q o S ) = 0 m o d B  
q: p ~ q  

for fixed p E M and 

(*) ~ F. (1)p ,(F (1)q o S) = 0 m o d B  
p: p ~ q  

for fixed q 6 N. Other linear relations are obtained by applying some power of 

S to these relations. 

(AIII) Now suppose that  Ep,q,j a(p, q,j)(FO)o sJ)(F 0) o S j+l)  = 0 m o d B  

where all but finitely many a(p, q, j) are zero. The aim is to prove that  this 

equality can be described as a finite linear combination of the relations (,): 

Write this out in full: 

~"~ a(p,q,j)(F (1) o sJ)(F (1) o S j+*) = ~ b ( p , n , j ) ( F  (n) o S j) E B 

where it is understood from now on that  such sums run over all integer variables 

which are explicit arguments of the coefficients and all but finitely many of the 

summands are zero. 

As in previous arguments, the F (n) on the right-hand side may be decomposed 

into F ( f  ) where either p'  is not maximal to the n~th. level, or p~ is a maximal  

path. This can be represented as a splitting of the sum on the right-hand side 

itself into E 1 and E 2 respectively. 

E 2, involving maximal paths, can be split further using the relations above, as 

E 2A which is a sum over p" ~ q" of the form ~ a'(p", q', j)(F(~)o SJ)(F(,S,)o S j+l)  

for s chosen large enough, and E 2B which is a sum involving (p", n") such that  

p" is not maximal  to the n"th.  level. Note that  the a ~ are formed from direct 

linear combinations of the relations therefore. 

On the left-hand side: Suppose that  max{[j[: 3 (p,q): a(p,q,j) 7 ~ 0} = J .  

Recall the definition of x(p, q), points in II, from before. Find t large enough so 

that,  i fp  E M and [j[, [j'[ <_ J, F(t)(SJ+J'x(po,qo)) = 1 implies that  j + j '  = 0 and 
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Po = P to level t, and so that ,  i fq  �9 N and [j[, [j'[ < J, F(t)(sJ+J'+lx(po, qo)) = 1 

implies t ha t  j + j~ = 0 and q0 = q to level t. 

Here the fact tha t  there are a finite number  of maxi:.nal pa ths  and min imal  

pa ths  is used. 

Using the connection between Fp(I)(F O) o S) and F(t)(F (t) o S) noted before, 

the lef t-hand side can be re-wri t ten as two sums: E 3 involving F(, ~') wi th  p~ not 

max ima l  to the n'th level; and E 4 = ~ a(p, q,j)(F(pt)o s J ) (F  (t) o S j+l) where it 

is essential to note tha t  the a(p, q, j )  are the same coefficients as before. 

Wi thou t  loss of generality, t = s and this common  value is greater  than  the n ~ 

and n" involved above. 

The  equali ty above can be rearranged therefore as 

In full 

E (a' (p, q, j )  - a(p, q, j ) ) ( F  (t) o SJ)(F (t) o S j+l) = E b'(p', j)(F(t, ) o S j) 

where the sum on the right involves only pt which are not max imal  to the t th.  

level, and the sum on the left involves only p ~ q. 

Eva lua te  bo th  sides of this at  the point  SJ'x(po, qo) and use the const ruct ion 

of t to show tha t  a'(po, q0, -J ' )  - a(po, qo, - j ' )  = 0 for all P0 E M,  q0 e N and 

IJ'l---J. 
Recall t ha t  the a ~ are formed from linear combinat ions of the relat ions (*) and 

so the present  a im of this a rgument  is achieved: The  relations (*) between the 

F (1) o SJF (1) o S j+l modulo  B above span linearly all the relat ionships possible. 

(BI) Let  

D = spanz{(F(1)  o SJ)(F (1) o SJ+I) :  p ~ q , j  e Z}. 

Define 

Dj  = spanz{(Fp (1) o SJ)(F (1) o s J+ I ) :  p ~ q} 

so t ha t  D -= Z Dj and D A B = y~(Dj N B). 

Consider the graph G whose ver tex set is M u N and in which p is connected to 

q if and only if p E M, q E N and p ~ q. Note tha t  by the na tura l  correspondence 

of pairs (p, q) wi th  edges of G, the columns of the edge-vertex mat r ix ,  A(G),  are 
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precisely the relations (*) (for fixed j )  involved in (AII). Thus Dj N B sits in Dj 

exactly as Im(A(G))  sits in Z E. 

G is biparti te and so Lemma 6 shows that  Do -- (Do n B) | Co where Co 

is the span of some unit vectors in Do which correspond to some minimal set 

of edges, E I, whose removal makes G a forest. Let { H 1 , . . . , H . }  be a basis 

set for Co where each Hi is a single F(pl)F (1) o S, (p, q) E E ' .  Similarly, let 

Cj = spanz{H1 o s J , . . . ,  H~, o sJ} and note Dj = ( D j n  B) �9 Cj. 

The work in (AIII) shows that  D / ( D N B )  -- |  N B ) o r ,  in other words, 

the Cj are linearly independent. Let C = ~jCj s o  that  U{H1 o s J , . . . ,  H~ o S j } 

is an algebraic basis of C. Thus C N B = 0 and it is clear that  C + B = C(II:  Z). 

So C(H: Z) = B �9 C is a decomposition into S-invariant subspaces. 

(BII) Now the aim is to determine the effect of quotienting out the coboundaries 

from C(II:  Z): 

First note that  the quotient can be split between B and C above with the help 

of S-invariance, i.e. K0(II, S) = B~ cbdys (B  ) | C~ cbdys (C  ). 

Write F - F I if there is G E C(II:  Z) such that  F - F ~ = G - G o S. The last 

remark implies that  if both F and F t come from B, then G can be picked from 

B as well. 

Note that  F (n) - F (n) whenever p and q pass through the same vertex at level 

n. To see this, observe that  there is a j E Z such that  a path, p~, agrees with p 

to level n if and only if Sip I agrees with q to level n. Thus F (n) = F(q n) o S j and 

o F (n) s J i f j < O w i l l d o .  G ~- A.~i=I ~-~j F'(n)q o S j if j _> 0 and G = - }-~i=j+l o 

Also note that  F _~ F o S. 

Recall the unordered Bratteli diagram and the matrices j(n,t) which count the 

number of paths from points in level n to points in level t. Consider the vectors 

ev, v a vertex in level n, which form the natural  unit basis for Z y~, the domain of 

j(,~,t) for all n < t. Recall also the notation p(n): the vertex at level n through 

which path  p passes. 

To show a (1-1) linear correspondence between Ko(I) /Q and B~ c b d y s ( B  ), 

it is sufficient to show that  ~-~ai(F('~ ') o S k') ~ 0 iff there is a t > ni such 

that  y~ aiJ(n"t)ep,(,~,) E Q, for then the map F (n) ~-* [(n, ep(n))] extends linearly 

C(H: Z) ~ Ko(I) and factors through the quotients. 

Without  loss of generality, n~ = s for all i; both  expressions above transform 

in the same way when summands are split up to a common higher level. Also, 

all mention of S can be removed easily by coboundaries. Further, the arguments 
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above make F(~ ) here dependent (modulo coboundaries) only on the vertex at 

level s through which Pi passes. So suppose that,  for each v E Vs, Pv is an infinite 

path which passes through v at level s, which is maximal up to that  level and 

arbitrary at higher levels. Then the sum of interest, transformed now to ~ aiF(~ ), 

can be regrouped into a ___-equivalent sum ~-~v~v8 a~ F(s), where F (s) -- F( :  ). 

It is sufficient, therefore, to show that  ~-~,eys avF(~) ~- 0 if and only if 

~ a ~ e v ~ Q ~ .  

A well-known result of Gottschalk and Hedlund ([GH]) makes the correspon- 

dence immediate: Their result shows that F -~ 0 if and only if there is a constant 

K such that  [~L=oF(Sk(qn))  I <_ g uniformly for all L >_ 0 and all (qn) �9 H. 

Putt ing F = ~-~,cv~ avF(~) in the condition above is equivalent to the definition 

of Q~ almost immediately and gives the correspondence required: 

K o ( I ) / q  =- B~ cbdYs(B ). 

(BIII) The coboundary behaviour of C is easier to compute directly from the 

linear relations determined before: Removal, by coboundaries, of the mention of S 

ensures that  it is sufficient to consider expressions of the form ~ aiHi = G - G  o S 

where G C C. 

When an equality of the form ~ aiHi = G -  G o S where G E C is written out 

as a sum of (F  O) o s J ) ( F  0 )  o S j+l)  functions, the left-hand side involves only 

j = 0, but the right-hand side must involve other j r 0 and so, by the linear 

independence observed in (BI), both sides are zero. Thus the equivalence classes 

{[Hi] cbdys(C): i -- 1 , . . . ,  ,}  form a basis for C~ cbdys(C ) as required. 

So the theerem is complete. 

COROLLARY 10 OF PROOF: v : e -  v T c where e is the.number o f ~  equivalent 

pairs of  maximal paths and minimal paths, v is the number of maximal or minimal 

paths and c is the number of components in the graph G whose vertices are 

maximal or minimal paths connected by the ,,, relation. 

Note that  all the decompositions, quotients etc. are performed by positive 

operations and some of the order structure is preserved. However, there seems 

to be no easy general way to compute the positive cone and unit in this repre- 

sentation of K~ S). All that can be deduced from the construction of B and 

C above is that  the direct sum positive cone of Ko( I ) /Q  @Z ~ is contained in the 

positive cone of K~ S) under the isomorphism above. For example, if v = 0 

then K o ( I ) / Q  is order isomorphic to K~ S). 
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A p p l i c a t i o n  to  s u b s t i t u t i o n  m i n i m a l  s y s t e m s  

This final section gives the motivating application of the general results of the last 

section: The computation of the K ~ group without order for a given 

primitive substitution minimal dynamical system. Using this and Theorem 3, 

these dynamical systems may be distinguished therefore at the level of strong 

orbit equivalence. 

The work of the previous section applies using the following lemma: 

LEMMA 11: Suppose that a is a primitive substitution with alphabet A and 

w = co(a.i) is a stationary sequence which generates the substitution minimal 

system (X(w), S) as before. Suppose that I is the improper Bratteli diagram for 

a and that II is the path-sequence space constructed from I before. Then there 

is p ~ q and r such that r (II, S, x(p, q)) ~ (X(w), S, w) is a pointed topological 

conjugacy. 

Proof'. Recall the construction of the improper Bratteli diagram for the substi- 

tution a defined on an alphabet A. Recall also the map, ~r, defined on the path 

space, P,  which records the letter which corresponds to the vertex at the first 

level through which the path passes. 

The aim of the proof is to show that the map r from H to A z defined by 

r (p~) --* (7r(pn)) is homeomorphic onto X(w). If this is true, then this map 

clearly respects the shift dynamics and conjugacy follows. 

Some facts from before: Recall that  this diagram is minimal in the sense that,  

given a pair of paths p, q and a t >_ 1, some well-defined Vip will agree with q to 

level t. ~r assigns distinct values to maximal paths and distinct values to minimal 

paths. Also w(a.i) can be retrieved as ..-Tr(V-Xp*)r(p*).Tr(q*)zr(Vq*) ..., for 

some p* maximal and some q* minimal, w + = .lr(q*)Tr(Vq*).... 

(i) ~b maps to X(w): Suppose that (Pn) E I I  and let a = r = 

(7r(pn): n C Z). To show that a E X(w) it is enough to show that  every fi- 

nite subword of a is a subword of w and it is sufficient to consider the finite 

words a[-N,  N] for N fixed large. By the minimality of (H, S) there is an m _> 0 

such that  Vmq * is sufficiently close to P-N that ~r(Vm+iq *) = 7r(p-N+i) for all 

0 < i < 2N. Therefore, a[-N,  N] -w+[m, m + 2N] as required. 

(ii) r is continuous: This is clear from the continuity of ~r on the path space. 

(iii) An inverse to r Suppose that (p~) and a are as above and that  k > 1. 

Suppose that  Mk = max{]ak(b)[: b E A} and set Lk = L(k, Mk) from Corollary 
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2. This implies that  wherever c~[-Lk, Lk] = w + [t -- Lk, t + Lk] appears in w +, the 

k beat  is determined to radius Mk around position t. This is sufficient radius to 

determine uniquely the kth. order substitution word, ilk, which sits around the 0 

coordinate in a.  flk inherits a natural  zeroing from its position around the zero 

in a.  There a unique symbol bk so that  ~k -- ak(bk) ignoring the zeroing. 

Thus, knowing a determines a sequence of symbols bk which may be interpreted 

as vertices in Vk+l. The symbol b0 -- no, by convention, a vertex in 1/1. The 

edges which are constructed to join these vertices can be found in the improper 

diagram and are determined by the relative positions that  the zeroed words/3k 

nest in each other. So, from a,  a path, p(a), in P can be found. Also p is 

continuous since the construction of initial segments of p(a) depends only on a 

fixed block of coordinates from a. 

The construction above is unique and well-defined at each stage by Corollary 

2. 

Note also that  if Vnp(a)  is defined, then it equals p(Sna); the ~k pat tern  is 

simply shifted n places. 

In constructing p(a) two things can happen: 

(a) The nested zeroed words ~k expand unboundedly both left and right so 

that  liml3k = a.  In this case it is clear that  p(a) is a path  whose forward and 

reverse iterates by the Vershik map are all defined and further 7r(Vnp(a)) = an. 

(b) The nesting is bounded on one side and limflk is a semi-infinite zeroed 

subword of a.  Say that  the nesting is bounded to the left and the extreme point 

is the symbol at the - m t h  coordinate of a,  m > 0. This implies that  all edges 

in p(a) are minimal beyond a certain level: the level beyond which each 13k nests 

at the extreme left of ~k+l. Thus all edges in q = p (S -ma)  are minimal and so 

q is a minimal pa th  in the improper diagram. 

The nesting pat tern  for s - m - i n  is also bounded, but on the right, and all the 

edges in p = p ( S - m - l a )  are maximal and p is a maximal path, therefore. 

Since S - m a  e X(w) ,  a [ - m -  L , - m  + L] = w i t - L ,  t+  n] is a subword of w for 

any choice of L and many choices of t > L. In particular let L = Lk as before, 

which is large enough to determine uniquely the level k substitution words either 

side of the tth. coordinate in w whatever t is picked. Let r be the pa th  p(Stw) 

and then note that  r agrees with q and V - l r  agrees with p both to level k by 

construction, k was arbitrary and so p ,~ q. 

Therefore, in this case, the sequence of paths p,~ = p(S'~a) is also a member  
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of II  with a --~ break between the - m  - 1 and - m  coordinate where the Vershik 

map is not defined. 

The upshot of this is that  the map r from X(a~) to path  sequences, defined 

r  n C Z) -- (p(sno0: n C Z), maps to H. 

It  is not hard to see now that  r and r are inverses and continuous maps, hence 

the homeomorphism required above. 

Incidentally, since al itself comes under case (b) above with the break between 

- 1  and 0, this shows that  p* ,,~ q*, a fact that  was not assumed in the arguments 

above. 

COROLLARY 12 OF PROOF: There is a bijection, ~, between the set {(p, q): p ~ q} 

and the set of recurrent pairs, bc, to be found in a; (i.e. bc such that ~(b.c) is 

well-defined and in X(~) ) .  This bijection is well-defined by r -- x(p, q) i f  

and only i f  ,~(p, q) = bc and, in fact, ~(p, q) -- lr(p)Tr(q). 

Proof: This comes from considering case (b) in the proof above. All instances 

of this case correspond equally to recurrent pairs of letters to be found in a; and 

u-related maximal  and minimal paths in the diagram. 

SIMPLIFYING v AND Q FOR SUBSTITUTION SYSTEMS. Define the following 

graph G'  -- (V ' ,E ' ) :  V' -- AtAA ~ is two copies of A and b E A is connected 

to c' E A' if and only if bc is recurrent and appears in ~. Recall that  A -- [A[. 

Recall the graph, G, defined from maximal and minimal paths in the improper 

Bratteli  diagram (Corollary 10). Corollary 12 above shows that  G' = GtA{isolated 

points} and so A(G) differs from A(G') by a few zero columns. Thus Im(A(G' ) )  -- 

Im(A(G))  etc., and all the constructions of the past section proceed with reference 

to G' instead of G. 

In the case of substitutions the description of sweep vectors may be simplified 

as well: given the substitution sequence w E A z, let W be the set of finite 

subwords of w. For each a E W define a vector ~ E Z h with coordinates/35 equal 

to the number of occurrences of the letter a in a.  The collection of such vectors 

coincides with the subset of positive vectors in Bt for any t. 

The presence of non-zero vectors in Q reflects therefore a strict rational 

balance between the numbers of occurrences of individual letters in the sub- 

sti tution sequence. See example (d) below. 

These simplifications are of particular use when going directly from the 

substitution to the dimension group without reference to Bratteli diagrams. The 
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following is a rephrasing of results 9 to 12. 

THEOREM 13: I ra  is a primitive substitution scheme with all other notation as 

before, then K ~  S) = Ko( I ) /Q  @ Z v where v = e' - 2A + c', e' being the 

number of  edges in G t and d the number of components. 

E x a m p l e s  

The Theorems above have proved very useful in simplifying the computat ion of 

dimension groups of given substitution minimal systems. Whereas the proper 

Bratteli  diagram is often difficult to compute and the connection matr ix  is some- 

times of high dimension, the improper diagram can be written down immediately 

and is often of small dimension. This is best illustrated by examples: 

(a) The Morse-Thue substitution minimal system: The improper diagram 

connection matr ix  

has no unit eigen-value and so Q - o. Ko(I)  = Z[1/2]. The matr ix  A(G) = A(G') 

in this case is (il0 0) 0 1 0 
1 0 1 
0 1 1 

and from this can be computed u -- 1. Thus K ~ - Z[1/2] @ Z. This may be 

confirmed long-hand using the connection matr ix  for the proper diagram noted 

before. 

(b) The substitution 0 --* 001 and I --* 110 is primitive etc. forming a sequence 

start ing 0.0 and using a 2. The connection matrix for the Improper  Bratteli  

Diagram has eigen-value 1 corresponding to an infinitesimal (1, (1, - 1 ) )  in the K0 

group and allows the possibility that  Q can be non-trivial. However, an induction 

argument shows that  the number of 0s in the word w + [0, 2.3 n] exceeds the number 

of ls by n + 2 and so Q -- 0 by examining the vectors in ]1 defined by such words 

(there is no need to examine higher ~t by stationarity). Ko(I)  = Z[1/3] @ Z. 

Also G t is the same as for the Morse sequence, so K ~ - Z[1/3] | Z 2. 

(c) The K0 for the proper Bratteti diagram from the substitution 0 --~ 011110, 

I --+ 100001, is Z[1/21 �9 Z[1/6] �9 Z. 

(d) The substitution 0 --* 021, 1 ~ 120, 2 --+ 21202, with the recurrent pair 2.0, 

is a non-trivial example of a system in which Q r 0: Here the improper diagram 
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connection matrix is 

1 1 
1 3 

and Ko(I) = Z[1/2] | ~, the second summand being generated by the eigen 

vector (1, 1, - 1 )  with eigen-value 1. Indeed, the periodicity of the symbol 2 in 

the sequence ensures that  Q is generated by (1, (1, 1 , -1 ) ) .  The graph for G' 

has two components each of which is a two-edge path. Thus u = 0 and so K ~ 

for this case equals Z[1/2], implying that this system is strongly Kakutani orbit 

equivalent to the 2-adic odometer. 

S t a t i o n a r y  o r d e r e d  B r a t t e l i  d i ag r ams  and  s u b s t i t u t i o n  s y s t e m s  

This final section achieves a complete characterisation of the strong orbit 

equivalence classes of substitution minimal sets in terms of certain dimension 

groups with unit. It also characterises the conjugacy classes of substitution min- 

imal systems in terms of certain stationary ordered Bratteli diagrams. 

Unlike past sections, this one will need to distinguish carefully between ordered 

Bratteli diagrams and Bratteli diagrams without the order. There is a notion of 

telescoping and equivalence of diagrams (see [HPS, GPS, S]) within each of these 

two categories. The reader will be assumed to be familiar with these constructions 

in this section. The main result used is: 

THEOREM 14 (from [HPS, S]): Suppose that (X ,S , x ) , (Y ,T , y )  are Cantor 

minimal systems with distinguished points. Suppose further that I, Y are the 

respective proper ordered Bratteli diagrams, and Ko(I), Ko(Y) the respective 

dimension groups with unit (the order structure is now important). 

(a) (X, S) is strong orbit equivalent to (Y,T) if and only if Ko(I) =- Ko(J) as 

dimension groups with unit. 

(b) ( X, S, x) is pointed conjugate to (Y, T, y) if and only if I is order-equivalent 

to J. 

The natural construction in [LV] of an improper diagram from a given substi- 

tution can be reversed. Given a minimal stationary ordered Bratteli diagram, a 

substitution can be read from the repeating graphical unit in a natural way: Each 

level is in natural 1-1 correspondence with a set of letters and the substitution 

word for a given letter is determined by the source of the edges, taken in order, 

whose common range corresponds to the given letter. 
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Ideally this substitution is primitive and the diagram is proper, allowing 

Theorem 11 to show that the Vershik map is conjugate to the corresponding 

substitution minimal system by a natural homeomorphism. The results of this 

section show how far this ideal applies in general. 

Minimality of the diagram forces the resulting substitution to satisfy many 

of the conditions required for primitivity. It helps further when the diagram is 

proper. But there remain problems in general when checking the primitivity of 

the substitution derived from the diagram, in particular when hoping to exclude 

periodicity in the substitution sequence. This complication will be met later. 

First, another problem can be dealt with immediately: The improper diagram 

for a substitution always has a single edge between the vertex at the 0th. level 

and each vertex in the 1st. level. It is useful to be able to reduce the general 

stationary Bratteli diagram with multiple edges at this level to one with single 

edges. 

LEMMA 15: Suppose that I is a minimal stationary ordered Bratteli diagram, 

then it is order-equivalent to J = (V~, En), a minimal stationary ordered Bratteli 

diagram in which each vertex of V1 is connected to Vo by a single edge. I f  I is 

proper, then J is proper also. 

Proof: Suppose that  C is the connection matrix of the repeating unit of I and 

that  v = (Vl, v2 , . . . ,  vm) T is the column vector which represents the connections 

of level 0 to level 1. Let M = ~ vi (_> m). 

Let A be the m • M matrix whose j t h  column (1 _< j _< M) is the unit 

vector (0, 0 , . . . ,  1, ..0) T with 1 in the kth. place for all k such that ~-~i<k v~ < 

J -< ~'=i<k vi. There are many choices of B, an M • m matrix, so that  A B  = C. 

Replacing C with some high power itself if necessary, one can choose B with all 

its entries strictly positive. Thus D = B A  is an M • M matrix whose entries are 

all strictly positive. Also A(1, 1 , . . . ,  1) T -- v. 

Thus the stationary minimal unordered diagram, J, with connections D be- 

tween levels _> 1 (each with M vertices) and (1, 1 , . . . ,  1) T between level 0 and 

level 1, is equivalent to the unordered diagram which lies under I since they are 

both a telescoping of an intermediate diagram with periodic connection matrices: 

( 1 , 1 , . . , 1 ) T , A , B , A , B  ... .  

In this intermediate diagram, the order on the edges between levels with con- 

nection matrix A is unique, and an order for edges with connection matrix B can 
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be assigned so that  the telescoping of BA to C also reproduces the original order 

of I provided that  we have been careful in the choice of B. The reader should 

try a simple example to be convinced that  with enough edges available from B 

such a choice can be made in general. This defines an order for the telescoping 

of AB to D and hence for Y. So we are done. 

Equivalence preserves the minimal paths and maximal paths in a natural  way 

and so preserves the properness. 

This latter argument is in fact a special case of symbol splitting: See [HPS] 

and IS] for the introduction of this notion. 

A convenient way of ensuring that  a minimal stat ionary ordered Bratteli  

diagram is proper is to provide all the maximal edges with range in V2 with 

a common source in V1 and likewise for the minimal edges. Thus every substitu- 

tion word in the derived substitution starts with the same letter and ends with 

the same letter, e.g. 0 --* 0011, 1 ~ 0101. Given enough edges between points 

in consecutive levels, there is great freedom to order the edges in this way while 

ensuring that  the corresponding substitution is primitive. This idea gives almost 

immediately the proof of the following Theorem: 

THEOREM 16: Suppose that C is an irreducible square ( AxA, A >_ 2) matrix with 

strictly positive integer entries, K = l ime Z ~ with a given order unit (= [(1, v)], 

all coordinates of v strictly positive, without loss of generality). Then there is 

a minimal primitive substitution system, (X, S), on M letters, where M is the 

sum of the coordinates of v, such that K~  S) =- K as dimension groups with 

unit. 

Proof: Construct a minimal unordered Bratteli diagram with C as the connec- 

tion matr ix  and with multiple edges between level 0 and level 1 according to the 

coordinates of v. The dimension group with unit of this diagram is isomorphic 

to K.  

Use the argument of Lemma 15 (ignoring the order structure) to make an 

equivalent unordered diagram with single edges between level 0 and level 1. There 

are M of these edges by construction and M vertices at each level. Equivalence 

of the diagrams ensures that  the dimension group with unit that  corresponds to 

this diagram is isomorphic to K and so, without loss of generality, it may be 

assumed that  there are single edges between level 1 and 0. 

Now, replacing C with some high enough power if necessary, assign an order 
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on the edges to ensure that the ordered diagram is proper and the corresponding 

substitution is primitive. As noted above, the substitution system derived from 

this will be conjugate to the Vershik map which has K ~ equal, as dimension 

group with unit, to K0 of the diagram as required. 

Thus, by Theorem 14a, the strong orbit equivalence classes of substitution min- 

imal systems are characterised by dimension groups with unit which are simple 

stationary limits of the form limc Z n with given unit. 

Theorem 16 leaves much of the order structure of a stationary ordered Bratteli  

diagram unexploited. In fact, a complete dynamical characterisation of proper 

minimal stationary ordered diagrams is possible. This shows that  not only can 

any K0 group of such a diagram be described as a K ~ group of some substitution 

minimal system, but that  every stationary proper order on the diagram has its 

Vershik map either equicontinuous or conjugate to a substitution minimal system. 

THEOREM 17: Suppose that I is a minimal stationary ordered proper Bratteli 

diagram (and non-trivial in the sense that the Markov Compactuum is a Cantor 

Set) and that ( X ,  S) is the well-defined Vershik map on the Markoy Compactuum. 

Then (X, S) is either 

(a) Kakutani equivalent to a d-adic system for some d >_ 2, or 

(b) conjugate to a substitution minimal system. 

Hence, under the assumtions above: (X, S) is equicontinuous iff (X, S) is 

Kakutani equivalent to a d-adic system; (X, S) is expansive iff (X, S) is con- 

jugate to a substitution minimal system. 

Proof: This uses frequently and without mention the result of Theorem 14b: 

that  proper ordered diagrams, equivalent by telescoping, have conjugate 

dynamics. 

Assume, without loss of generality, that there are at least 2 vertices at the first 

level. Otherwise, the system is clearly Kakutani equivalent to a d-adic system 

where d is the number of edges between level 1 and 2 say. 

Replace I with the J of Lemma 15, which is a proper minimal diagram, there- 

fore, with single edges between levels 0 and 1. The unique maximal path passes 

through a sequence of vertices as it progresses through the levels of the diagram. 

The sequence of corresponding letters is a one-sided periodic sequence and the di- 

agram can be telescoped periodically so that,  without destroying stationarity nor 

the single edge from level 0 to level 1 property, the maximal path goes through 
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a sequence of vertices corresponding to the same letter, a say. Similarly for the 

minimal path and letter i (which may be the same as a) with more periodic 

telescoping if necessary. 

Further periodic telescoping ensures that,  without loss of generality, every 

minimal edge in En has as its source the vertex in Vn which corresponds to the 

symbol i. Similarly for a with respect to maximal edges. A substitution a can 

be read from the diagram as mentioned before. The construction above implies 

that a(b)  = i . .  �9 a for all symbols b and minimality of the diagram shows that  ai 

is a recurrent pair for the substitution. 

As noted before, the proof would be finished if this substitution were primitive, 

but this need not happen. The main difficulty is the possibility that the sequence 

lira a n (a.i) is periodic. The proof proceeds by showing that the periodic case gives 

option (a) in the statement of the theorem. 

Suppose that  the sequence w = lim(rn(a.i) is periodic and that  13 is the shortest 

repeating unit: w . . . .  ~ . ~ / 3 . . . .  Assume that n is chosen large enough so that 

for each symbol, b, an(b), a subword of ~, contains sufficiently many mentions 

of/3. Suppose that an(i) = / 3 / 3 . . . ~  where /3 p is a proper initial segment of 

13. /3' terminates with a and so a2n(i)  . . . .  an (a )  . . . .  /3/3/3. If the length of 

a2n(i)  were not a multiple of the length of ~, then w would equal itself offset 

by a shift smaller than the length of/3. This would contradict the minimality of 

13. A similar argument applies to sufficiently high powers of a applied to each of 

the symbols. So, by telescoping the diagram periodically sufficiently many times 

more, it can be assumed that each a(b) has the form of a periodic finite word 
~...~. 

This allows a further modification of the diagram: For each n > 1, interpolate 

a level, Wn, between Vn and Vn+l, consisting of a single point. For each symbol 

b, connect the vertex in Vn+l which corresponds to b to the point in Wn by as 

many edges as there are mentions of/3 in a(b).  The point in Wn is connected to 

vertices in Vn by ordered edges determined by the ordered appearance of symbols 

in/3. This new diagram is equivalent to the old one and, although not strictly 

stationary, has two graphical units which alternate. 

Now telescope to the W levels and produce an equivalent diagram which has 

single points at each level and which is stationary, although it  may have a multiple 

edge of the wrong multiplicity between level 0 and level 1. This is precisely case 

(a) in the statment of the theorem. 
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So, rejoining the main line of the argument with a diagram, J, which is proper, 

minimal and stationary and which has single edges between level 0 and level 1, 

assume that the substitution obtained from the diagram gives an aperiodic se- 

quence. The argument proceeds to make equivalent modifications to the diagram 

in order to make the substitution 1-1 while keeping the edges between levels 0 

and 1 single. 

Suppose that  a ( a )  = a (b) ,  a r b �9 A. Each level n >_ 1 of vertices in I has 

a point (n, a) corresponding to a and similarly for b. Create a new sequence of 

layers of vertices in which V~ = {(n, a')} U V~ \ { ( n ,  a), (n, b)} for all n >_ 1, where 

a' is some new symbol. Thus IVY[ = [V~[- 1. 

To define E~n, n > 1: For c r a r there are as many edges with range (n + 1, c) 

as there were before and their source and ordinality is as before but for a natural 

coalition of the old (n, a) and (n, b) to (n, a'). The edges with range (n + 1, a') 

have source and ordinality exactly as with those with range (n, a) in the old 

diagram but with the same coalition as above. The edges in E~ are all single. 

The claim is that this new ordered diagram J '  ~ r = (V', En) is order equivalent to 

the old one. To this end, form a third ordered diagram which will be intermediate 

to these two. Levels: W2n = Vn, n > 0 and W2~-1 -= V~, n _> 1. Edges: (2n, e), 

n _> 1, is connected to (2n - 1,d) if and only if (d r a p and d = c) or (d = a ~ and 

c = a or b) - -  no need for ordering of edges here. (2n + 1, c), n > 0, is connected 

to (2n, d) with the same number of edges and same ordinality as those from c (if 

c ~ a') or a (if c = a ' )  in the old diagram. 

V/ Telescoping this third diagram to odd levels produces ( n, E~) and a telescop- 

ing to even levels gives (Vn, En); hence the order equivalence as required. 

Clearly j r  is proper minimal etc. and it has single edges between levels 

0 and 1. 

j r  defines a substitution which still may be not 1-1. In this case, if IV~I ~ 1 the 

procedure above can be repeated until the diagram is reduced either to singleton 

vertices at each level, and hence case (a) in the Theorem, or to a diagram whose 

substitution is 1-1 which, by arguments before, produces a primitive substitution 

and case (b) as required. 

Equicontinuity and expansiveness are disjoint properties (see [W]). In this 

context, expansiveness holds whenever the system in question is a subshift. So 

the second part of the theorem is just a rephrasing of the first part. 

In some sense, this is a converse to Theorem 5 and provides a complete 
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characterisation of substitution minimal systems in terms of proper stationary 

ordered Bratteli diagrams. 

C o n c l u d i n g  r e m a r k s  

The well-known Chacon example, where a(0) -- 0010 and a(1) -- 1, is an impor- 

tant case which is not covered by the analysis before - -  one of the substitutions 

has length 1. Indeed, there are complications at every turn since the improper 

Bratteli diagram generated by this substitution has a path which is both maxi- 

mal and minimal as well as another maximal path distinct from another minimal 

path. Thus the path-sequence space has a fixed point as well as a copy of X(w) 

and so it has no unique minimal subset. 

However, it is straightforward to define primitive substitutions (those devel- 

oped from the paired letter substitutions of [Q] for example) whose shift systems 

are conjugate to the Chacon system. With this adaption, the Chacon example is 

amenable to the analysis of this paper. In general, such an adaption produces a 

substitution sequence whose improper diagram has one maximal path and many 

minimal paths (or vice versa). In this case v = 0 and the problem of computation 

reduces to that of determining Q for the improper diagram of the paired letter 

substitution. This construction is pursued in detail in [H]. 

The author has developed a computer programme, in Q-Basic and suitable 

for a small Macintosh Computer, which computes the ordered repeating unit for 

the Proper Bratteli diagram for a given substitution system. The computations 

using Theorem 13 in examples (b), (c) and (d) above have been confirmed by the 

results of this programme. 

The programme computes that  K0 for the Chacon system above is equal to 

Z[1/3] @ Z. 
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